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Female breast cancer is the major cause of cancer-related deaths in western countries. Efforts in computer
vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper,
we present a methodology that uses Moran's index and Geary's coefficient measures in breast tissues
extracted from mammogram images. These measures are used as input features for a support vector
machine classifier with the purpose of distinguishing tissues between normal and abnormal cases as well
as classifying them into benign and malignant cancerous cases. The use of both proposed techniques
showed to be very promising, since we obtained an accuracy of 96.04% and Az ROC of 0.946 with Geary's
coefficient and an accuracy of 99.39% and Az ROC of 1 with Moran's index to discriminate tissues in
mammograms as normal or abnormal. We also obtained accuracy of 88.31% and Az ROC of 0.804 with
Geary's coefficient and accuracy of 87.80% and Az ROC of 0.89 with Moran's index to discriminate tissues
in mammograms as benign and malignant.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Breast cancer is the major cause of cancer-related deaths among
the female population. It is known that the best prevention method
is the precocious diagnosis, what lessens the mortality and improves
the treatment [1]. According to the American National Cancer Insti-
tute [2], it is estimated that every 3min a woman is diagnosed with
breast cancer and every 13min, a woman dies from this disease.
Mammography is currently the best technique for reliable detection
of early, non-palpable, potentially curable breast cancer [1].

With the advances of computer technology, radiologists have an
opportunity to improve their interpretation of mammograms using
computer capabilities that can enhance the image quality of mam-
mograms. Over the past two decades, many attempts have been
made by computer scientists to assist the radiologists in detection
and diagnosis of masses by developing computer-aided tools for
mammography interpretation. Image processing and intelligent sys-
tems are two mainstreams of computer technologies that have been
constantly explored in the development of computer-aided mam-
mography systems. Generally, these systems are classified into two
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categories: computer-aided detection (CAD) and computer-aided di-
agnosis (CADx) [3]. CAD and CADx systems can aid radiologists by
providing a second opinion and may be used in the first stage of ex-
amination in a near future, allowing the reduction of the variance
among radiologists in the interpretation of mammograms.

Our research group has been investigating for some time the use
of spatial statistics as texture descriptor. These techniques are largely
used in spatial data analysis. Our research started applying spatial
statistics to computerized tomography images for lung cancer nodule
diagnose as benign and malignant [4–6].

Later, with the promising results found in those works, we looked
for investigating the applicability of the same techniques for classify-
ing breast tissues using mammogram images [7–9]. In Braz et al. [7]
we used the same geostatistical techniques used in the present work,
but with a more specific approach, because we wanted to investigate
only the capability of classification of breast tissues as normal or ab-
normal in multiresolution images. In the present work, we focused
on looking into other aspects of the breast tissue. Here, the previous
work is extended including the classification of breast tissue as mass
and non-mass (normal and abnormal tissues) using different image
quantizations and also, the analysis and classification of normal tis-
sue as benign and malignant. The geostatistical measures are used
in the methodology as texture descriptors to obtain information
that is imperceptible to the human eye, which can furnish specific
information about the region under study. Based on the achieved
results we believe that the proposed methodology is very promising.
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Besides, we demonstrate that Geary's coefficient and Moran's index
are texture descriptors with great potential to be explored.

This work is organized as follows. In Section 2 we present some
related works. Section 3 presents the techniques for feature extrac-
tion, classification and validation. Section 4 presents a detailed de-
scription about the proposed methodology and evaluation. Next, in
Section 5, the results are shown and we discuss about the applica-
tion of the techniques under study. Finally, Section 6 presents some
concluding remarks.

2. Related works

Many methodologies have been proposed to solve the problem
providing assistance on the precocious cancer detection and diagno-
sis tools.

In [10], it was presented a methodology that uses independent
component analysis (ICA) along with support vector machine (SVM)
and linear discriminant analysis (LDA) to distinguish between mass
or non-mass and benign or malign breast tissues in mammograms.
As a result, it was found the following: LDA reaches 89.5% of accu-
racy when discriminating mass or non-mass and 95.2% when dis-
criminating benign or malignant in the DDSM database and, in MIAS
database, they obtained 85% when discriminating mass or non-mass
and 88% when discriminating benign or malignant; SVM reaches
99.6% of accuracy when discriminating mass or non-mass and 99.5%
when discriminating benign or malignant in DDSM database and in
MIAS database we obtained 97% when discriminating mass or non-
mass and 100% when discriminating benign or malignant.

Verma et al. [11] presents a new neural network technique for the
classification of suspicious areas in digital mammograms. The pro-
posed neural network technique was tested on the DDSM database
and obtained accuracy of 94%.

A generalized dynamic fuzzy neural network (GDFNN) approach
was used in Lim and Er [12] to classify breast tissues with accuracy
of 84.4% using the DDSM database.

Oliver et al. [13], proposed a strategy based on the adaptation of
the eigenfaces approach to the problem of detecting masses. Thus,
they introduced the concept of eigenROIs, which span the ROI sub-
space of the original image space. The result of this transformation
was a vector of weights describing the contribution of each eigenROI
to represent the corresponding input image. They proposed the use
of these vectors to construct the models for the training step. The
work used one set of 160 regions of interest (ROIs) extracted from
the MIAS database (40 of them were masses and the rest were nor-
mal tissue) and 196 ROIs containing masses and 392 with normal
but suspicious regions obtained from the DDSM database. In Oliver
et al. [14] the same authors extended their previous method by us-
ing the 2DPCA method [37] instead of the standard PCA technique,
improving the performance of the false positive reduction.

The work of Tourassi et al. [15] is based on comparing a new ROI
with all the ROIs in the database (template-based approach). The two
clearest differences between them arise from the similarity measure
and the database used. More specifically, the former developed a
likelihood measure which depends on the gray-level and the shape
of the ROIs. Both parameters were compared with the new ROI and
the set of ROIs present in the database, which was only composed by
ROIs depicting masses. From this comparison a likelihood measure
was computed. The work consists in comparing all the ROIs of the
database (including ROIs with and without masses) with the new
one using mutual information based on similarity measure. Thus, the
new ROI was labeled as belonging to the closest class. Note that with
the methods based on the template-based strategy, the similarity
measure used for classifying the ROIs has to be re-computed for each
new element, as it measures the difference between the new ROI
and all the ROIs in the database.

Varela et al. [16] proposed a strategy based on extracting gray-
levels and morphologic features, and training a neural network
(NNet) used to classify the new ROI. Results of FROC analysis for the
test set indicate that the proposed algorithm can achieve a TP rate
of 88% at 1.02 FPs/image.

In Lladó et al. [17] it is proposed the use of local binary patterns
(LBP) for representing the textural properties of the masses, extend-
ing the basic LBP histogram descriptor into a spatially enhanced
histogram which encodes both the local region appearance and the
spatial structure of the masses. The work also uses a support vec-
tor machine (SVM) to separate the true masses from the ones which
are actually normal parenchyma. The approach was evaluated using
1792 ROIs extracted from the DDSM database.

In Dominguez and Nandi [18] it is proposed a work using a set
of images selected from the mini-MIAS and the DDSM database.
The work proposed the extraction of six features from the ROIs for
characterization of mass margins (contrast between the foreground
region and the background region, coefficient of variation of edge
strength, two measures of the fuzziness of mass margins, a mea-
sure of spiculation based on the relative gradient orientation, and a
measure of spiculation based on edge-signature information). These
features were used with three popular classifiers (Bayesian classi-
fier, Fisher's linear discriminant and support vector machine) were
used to predict the diagnosis of a set of 349 masses based on each
of said features and some combinations of these. The Fisher discrim-
inant analysis produced a sensibility of approximately 0.65, with a
specificity in the range of 0.65–0.8. The experiment made with the
Bayesian classifier or the SVM achieved a sensibility ranging from
approximately 0.50 to 0.55, with a specificity in the range of approx-
imately 0.7–0.9.

In Mangasarian et al. [19] a methodology is proposed to perform
the nuclear analysis of tissues in breast nodules (fine needle aspi-
rates) through linear programming techniques for studying the di-
agnosis and prognosis. The diagnosis is performing by extracting the
following characteristics, using the Xcyt system: area, radius, perime-
ter, symmetry, number and size of concavities, fractal dimension (of
the boundary), compactness, smoothness (local variation of radial
segments) and texture (variance of gray levels inside the boundary).
Applying the multisurface method (MSM) for classification of tissues
into malignant and benign, resulting in 97% of accuracy.

There are also threeworks of our research groupwhich are related
to the method proposed in this article and which also show the
evolution of researches on this matter.

In Braz et al. [7] it is proposed a methodology to distinguish
mass and non-mass tissues on mammograms. It is based on the
computation of geo-statistical measures (Moran's index and Geary's
coefficient) over a multidimensional image representation through
wavelet transform. The computed measures are classified through
a support vector machine (SVM). The methodology reaches 98.36%
of specificity, 98.13% of sensitivity and an accuracy of 98.24% when
discriminating mass from non-mass elements, applying Geary's co-
efficient.

In Jr et al. [8], it is achieved accuracy up to 88% when discrimi-
nating breast masses into benign and malignant through extracted
geo-statistical characteristics using MIAS database.

In Oliveira Martins et al. [9], Ripley's K function was used together
with SVM to classify samples of benign and malignant tissues. In
that article, the author introduces the idea of using Ripley's K func-
tion in concentric rings. This method obtained sensibility of 94% and
accuracy of 94.25% using the DDSM database.

3. Background

In this section, the techniques used for developing the method
proposed in this work are exposed. They are: spatial texture analysis,
support vector machine and validation of classification methods.
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Fig. 1. Usual variables in spatial statistics calculus.

3.1. Spatial texture measures

Spatial statistics are quantitative studies about spatially contin-
uous data in space [20]. It treats geographic attributes as random
variables which depend on joined distributions and their locations.
The degree to which close neighbors over a surface share a simi-
lar property is characterized by spatial autocorrelation. Herein these
statistics focus on the process that occurs in space and the applied
methods try to describe and analyze the environment [21].

The goal of the spatial approach is to measure the spatial asso-
ciation between a pair of observations separated by a certain dis-
tance. Fig. 1 exemplifies these approaches. The pair of observations,
head and tail, are points separated by a distance and direction vec-
tor, lag(h). We typically assume that spatial autocorrelation does not
depend on the location of the pair of observations, but only on the
distance between both observations, and possibly on the direction
of their relative displacement.

Head is a reference point (origin pixel) and tail is a target point
(target pixel). Note that one head point could be analyzed through
many tail points that the experiment might need. In our simple
example, the head point is analyzed onlywith a certain tail point situ-
ated at a certain distance and direction represented by the lag(h) vec-
tor. This way, we can measure the existing autocorrelation between
the head point and the set of tail points. The spatial statistics quan-
tify the strength of these associations through similarity analysis of
spatially distributed features. In our work we intend to analyze sev-
eral combinations of pairs of pixels (several origin pixels in relation
to several target pixels) given some distances and some azimuths.

In this situation, observations separated in space by a certain
spatial distance lag(h) have similar values (correlationship). The ob-
jective of statistics is to measure the degree of spatial association
among the observations of one or more variables. The spatial auto-
correlation can be negative or positive. It will be positive when the
fact observed in some place is also observed in its neighbors sepa-
rated by a certain distance. The measurement can also assume null
values, situation by which we can prove the inexistence of spatial
correlation.

In the statistical context, texture can be described in terms of
two main components associated to pixels: variability and spatial
autocorrelation. The advantage of the usage of spatial statistics tech-
niques is that both aspects can be measured together, as we will dis-
cuss in the next sections. These measurements describe the texture
obtained from a certain image through the degree of spatial associa-
tion present in the geographically referenced elements of the image
described in the next section.

3.1.1. Moran's index and Geary's coefficient
Moran's index and Geary's coefficient summarize the strength of

associations between responses as a function of distance, and possi-
bly direction [22]. We typically assume that spatial autocorrelation
does not depend on where a pair of observations is located, but only
on the distance between both observations, and possibly on the di-
rection of their relative displacement.

Moran's index is applied to zones or points which have contin-
uous variables associated with their intensities. The statistic is used

to compare the value of the variable xi of one location with the value
at all other locations xj. It is formally defined by

Ih = N
∑

i
∑

jwij(xi − X̄)(xj − X̄)

(
∑

i
∑

jwij)
∑

i(xi − X̄)2
(1)

where h is the lag (vector), xi (head) is the variable value at a partic-
ular location i, xj (tail) is the variable value at another location (i� j),
N is the number of cases in the analysis that depend on the specific
choice of a reference point, xi, X̄ is the mean of the pixel value of
the referenced points and wij is a weight applied to the comparison
between location i and location j. More properly speaking, wij is a
distance-based weight which is the inverse distance between loca-
tions i and j, i.e. wij = 1/dij.

In our work N is the total number of pixels in the breast tissue
image. In other words, for a certain lag(h) and azimuth there is a
quantity of pixels analyzed in the image. This quantity is the N num-
ber. X̄ represents the mean of gray level pixels in a certain lag(h) and
azimuth in relation to a reference pixel. lag(h) indicates the cover-
age radius of the analysis. The xi and xj variables represent the pair
of pixels to be analyzed, which depends on specific lag(h) and az-
imuth. That is, all of the pixels in the breast image will be analyzed
within a distance(lag) and direction (azimuth). The shortest distance
(lag) between i and j is 1, and the longest possible distance (lag) is
the size of the breast tissue currently under analysis. In our work,
however, the maximum distance (lag) was limited to 10. The same
idea is applied to Geary's coefficient.

Moran's index has values that typically range from approximately
+1, representing complete positive spatial autocorrelation, to ap-
proximately −1, representing complete negative spatial autocorre-
lation [23].

The Geary's coefficient assumes that the interaction is not the
cross product of the deviations from the mean, but the deviation in
intensities of each observation location with another one [24]. Its
formal definition is

C(h) = (N − 1)
∑

i
∑

jwij(xi − xj)
2

2(
∑

i
∑

jwij)
∑

i(xi − X̄)2
(2)

where the values of xi, xj, N, X̄ and wij are analogous to those of
Moran's index.

The values of C typically vary between 0 and 2 [23]. The theoret-
ical value of C as 1, indicates that values of one zone are spatially
unrelated to the values of any other zone. Values less than 1 (be-
tween 0 and 1) indicate positive spatial autocorrelation while values
greater than 1 indicate negative autocorrelation.

This coefficient does not provide the same information about spa-
tial autocorrelation given by Moran's index. It emphasizes the differ-
ences in values between pairs of compared observations rather than
the co-variation between the pairs. So, Moran's index gives a more
global indicator, whereas the Geary's coefficient is more sensitive to
differences in small neighborhoods.

When computing experimental directional indexes of spatial au-
tocorrelation, it is defined the direction vector, azimuth, which cor-
responds to an angle in x plane. Other parameters used for spatial
autocorrelation index calculations—such as lag space, lag(h) toler-
ance, angular tolerance and maximum bandwidth—are exemplified
in Fig. 2.

The tolerance associated with the lag(h) is called lag tolerance. In
practice, for a specified direction, the indexes may be computed for a
number of lags. The tolerance associated to a direction is referred to
as the angle tolerance. These components together determine a cone
which can be constrained by the bandwidth factor. The bandwidth
controls the maximum width across the cone and allows it to focus
more on the specified direction.
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Fig. 2. Parameters used for indexes of spatial autocorrelation calculations.

3.2. Support vector machine

Support vector machine (SVM), introduced by V. Vapnik in 1995,
is a method to estimate the data classification function [25]. The
basic idea of SVM is to construct a hyperplane as the decision surface
in such a way that the margin of separation between positive and
negative examples is maximized.

The SVM term comes from the fact that the points in the training
set which are closer to the decision surface are called support vectors.
SVM achieves this by the structural risk minimization principle that
is based on the fact that the error rate of a learning machine on the
test data is bounded by the sum of the training-error rate and a term
that depends on the Vapnik–Chervonenkis (VC) dimension [26].

Statistical data classification could be mapped into a problem
of one, two or multiple classes. In two-class classification, the data
from two classes are available. The dataset is supposedly composed
of equally balanced class samples. An unbalanced dataset could lead
to poor results [27]. A common problem with this approach is that
the decision boundary created by two-class SVM could make a large
misclassification rate if class samples are not easily separable.

The process starts with a training set of points xi ∈Rn, i=1, 2, . . . , l
where each point xi belongs to one class identified by the label yi ∈
{−1, 1}. The goal of maximum margin classification is to separate the
two classes by a hyperplane such that the distance to the support
vectors is maximized.

The construction can be thought as follows: each point x in the
input space is mapped to a point z = �(x) of a higher dimensional
space, called the feature space, where the data are linearly separated
by a hyperplane. The nature of data determines how the method
proceeds. There are data that are linearly separable, nonlinearly sep-
arable and with impossible separation. The key property in this con-
struction is that we can write our decision function using a kernel
function K(x, y) which is given by the function �(x) that maps the
input space into the feature space. Such decision surface has the
equation

f (x) =
l∑

i=1

�iyiK(x, xi) + b (3)

where K(x, xi)=�(x) ·�(xi), and the coefficients �i and the variable b
are the solutions of a convex quadratic programming problem [28],
namely

min
w,b,�

1
2
wT · w + C

l∑

i=1

�i

s.t. yi[w
T · �(xi) + b]�1 − �i, �i �0. (4)

where C>0 is a parameter to be chosen by the user, which cor-
responds to the strength of the penalization errors and the �i's are
slack variables that penalize training errors.

3.3. Validation of the classification methods

In order to evaluate the classifier with respect to its discrimina-
tory ability, we have analyzed its sensitivity (Se), specificity (Sp) and
accuracy (Ac). The sensitivity is defined by

Se = Tp
Tp + Fn

(5)

where Tp is the number of tissues correctly classified as abnormal
and Fn is the number of tissues wrongly classified as abnormal. Sen-
sitivity measures the performance of the method when recognizing
abnormal tissues.

The specificity is defined by

Sp = Tn
Tn + Fp

(6)

where Tn is the number of normal tissues correctly classified and
Fp is the number of abnormal tissues wrongly classified as normal.
Specificity measures the performance of the method while recogniz-
ing normal tissues.

The accuracy is expressed by the overall rate of correctly and
wrongly classified tissues:

Ac = Tp + Tn
Tp + Tn + Fp + Fn

(7)

Also, we calculate Matthews correlation coefficient [29] typically
used in machine learning as a measure of the quality of binary (two-
class) classifications expressed by

Mcc = (Tp ∗ Tn) − (Fp ∗ Fn)√
(Tp + Fp) ∗ (Tp + Fn) ∗ (Tn + Fp) ∗ (Tn + Fn)

(8)

where Mcc more closely of +1 value represents a perfect prediction,
0 an average random prediction and −1 an inverse prediction.

In order to evaluate the ability of the classifier to differentiate
benign from malignant nodules, the area (Az) under the ROC (re-
ceiver operation characteristic) [30] curve was used. In other words,
the ROC curve describes the ability of the classifiers to correctly dif-
ferentiate the set of lung nodule candidates into two class, based
on the true-positive fraction (sensitivity) and false-positive fraction
(1-specificity).

4. Proposed method

This section presents the method proposed in this study case
which intends to classify breast tissues of mammogram images ini-
tially into normal and abnormal cases. Then, the correctly classi-
fied abnormal cases are classified again as benign or malignant. This
methodology is based on six steps: image acquisition, enhancement
breast tissue (histogram equalization), sample quantization, spatial
texture analysis, classification (two-class SVM) and validation (sen-
sitivity, specificity, accuracy, Matthews correlation coefficient and
ROC curve). Fig. 3 shows the steps of the proposed method.

4.1. Image acquisition

For the development and evaluation of the proposed methodol-
ogy, we used a publicly available database of digitized screen-film
mammograms: the digital database for screening mammography
(DDSM) [31]. It contains 2620 cases acquired from Massachusetts
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Fig. 3. Fluxogram for the proposed method.

Fig. 4. Regions extracted from the DDSM mammogram base: (a) abnormal tissue
and (b) normal tissue.

General Hospital, Wake Forest University, and Washington Univer-
sity in St. Louis School of Medicine. The data are composed of studies
of patients from different ethnic and racial backgrounds. The DDSM
contains descriptions of mammogram lesions in terms of the Amer-
ican College of Radiology breast imaging lexicon called the breast
imaging reporting and data system (BI-RADS). Mammograms in the
DDSM database were digitized by different scanners depending on
the institutional source of data.

In order to validate our methodology, we used a sub-sample
of 1394 breast tissues from the mammogram images, having been
used 584 samples of abnormal tissues(mass), among which 273 were
malignant and 311 were benign. These samples were identified by
specialists according to information from DDSM, and their edges
delimited by the same criterion. We used the information of edge
delimitation in a text file (called overlay) to extract the mass tissues
that will compose our sample set. This text file also provides the
characteristics of the lesion. We still used 810 breast tissues classi-
fied as normal (non-mass). The extraction of these tissues was per-
formed manually, that is, we choose regions that were not identified
as abnormal. Fig. 4 exemplifies the normal and abnormal regions ex-
tracted from the mammograms which were used in our sample to
validate the methodology.

4.2. Enhancement breast tissue

In order to improve the image quality for the recognition step,
we performed a global histogram equalization [32] with all obtained
tissues (mass or abnormal and non-mass or normal). This method
increases the contrast between objects of the image by better dis-
tributing gray level concentrations. An abnormal tissue is exempli-
fied in Fig. 5(a) and (b) demonstrates the same abnormal tissue after
the equalization step.

4.3. Sample quantization

With the equalized image, we made six versions of the sample
through quantization of the tonality range (28, 27, 26, 25, 24, 23). Our

Fig. 5. (a) Original abnormal tissue and (b) abnormal tissue after equalization.

goal is to extract texture information for different tonality resolu-
tions, making possible to codify information that could be otherwise
omitted. I.e. the calculations for Geary's coefficient and Moran's in-
dex in each new ROI which is quantized in a specific gray tone.

4.4. Spatial texture analysis

Each of them, after the quantization step, was submitted to a spa-
tial texture analysis using Moran's index and Geary's coefficient. This
analysis is done for each pixel of the sample. In order to improve the
capacity of describing texture patterns, we conduced the directional
experimental indexes of spatial autocorrelation, defining a direction
vector, an azimuth which corresponds to an angle in plane x, assum-
ing a lag increasing rate, tolerances for lag and azimuth to better
capture the neighborhood in a matrix arrangement of pixels. These
restrictions are exemplified in Fig. 2.

In practice, for a specified direction, the indexesmay be computed
for a number of lags. These components together determine a cone
which can be constrained by the bandwidth factor. The bandwidth
controls the maximum width across the cone and allows it to focus
more on the specified direction.

We calculated Moran's index and Geary's coefficient taking each
pixel at a time as the reference (head) point. Therefore, each pixel
is, in a certain moment, a reference to be examined for a specific
combination of lag distance, azimuth value and lag/angular tolerance.
The value obtained by the spatial function for this combination of
parameters will be an aggregation of the analysis of each pixel as
head point. The analysis guides, for each generated sample, a feature
vector containing the characteristic information of the pattern in this
area.

The features extracted from the breast tissues (abnormal and
normal tissue), considered as texture signatures were obtained for
a set of four directions, corresponding to azimuth values equal to
0◦, 45◦, 90◦ and 135◦. We adopted ±22.5◦ as the tolerance for angle
measurements. The initial lag separation distance (h) was 1. After,
this lag was incremented in 1 unity. Themaximum number of chosen
lags was 10. The tolerance lag adopted was ±0.45. We make this
analysis for six levels of quantization, as previously described, so
that the number of characteristics extracted for each sample is 10
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lags × 4 directions × 6 tonality resolutions (quantization), totalizing
240 features for each sample and function.

4.5. Classification

Each feature vector was classified by two-class SVM. These two
versions needs a kernel function responsible for classification of a
new data point x of Eq (3). An important family of kernel functions is
the radial basis function, more commonly used for pattern recogni-
tion problems, which has been used in this paper, and is defined by

K(x, y) = e−�‖x−y‖2 (9)

where �>0 is also user-defined. This parameter is used to normalize
the units between the feature spaces of the SVM.

The proposed methodology needs a two-step classification. The
first step discriminates regions into normal and abnormal breast
tissues. With all abnormal regions classified, the second step tries to
discriminate them into benign and malignant breast tissues.

For both steps, the set of feature vectors is split into two parts:
training and test, through a random choice. In first step, the training
and test sets are formed by normal and abnormal feature vectors. In
the second step, the training and test sets are formed by abnormal
tissues classified later, here treated as benign andmalignant samples.

For the step 1, 30% of the set was used to train an SVM. The
remaining samples (70%) were used as a test. We choose this con-
figuration trying to avoid a small number of samples in next step
since samples that will be used in step 2 come from the resulting

Fig. 6. ROI obtained from DDSM after equalization: (a and b) normal tissues and
(c–f) abnormal tissues. Also (c and d) are benign and (e and f) are malignant.

Fig. 7. Geary's coefficient and Moran's index applied to normal tissue.

classification of step 1. We also perform many empirical tests to
analyze that different percentage configurations did not represent
statistical improvement.

In step 2, to recognize abnormal tissues as benign and malignant,
we train an SVM classifier with 80% of the samples classified as
abnormal groups in last step. The other half of samples was used for
test. To avoid random results, we perform this step 50 times and do
some statistical analysis like standard deviation, mean and median.

We use the library for support vector machines (LIBSVM) [33] as
an implementation of SVM. For each training set used, we estimate
the parameters used by SVM in the classification. The C parameter
of Eq. (3) and the parameter � of Eq. (9) were estimated using the
grid function provided by LIBSVM tool.

For the first step, parameters C and � used were 32768 and
0.007813 using Geary's texturemeasures and 0.03125 and 0.0078125
using Moran's texture measures. For the second step parameters C
and � used were 128 and 0.5 using Geary's texture measures and
32768 and 0.001953 using Moran's texture measures.

4.6. Validation

Finally, with all results obtained by the classification step we
perform the validation of the performance achieved by the proposed
method using the rates of sensitivity (Se), specificity (Sp), accuracy
(Ac), Matthews correlation coefficient (Mcc) and the accuracy of the
cross-validation (Cross) with 10-fold for each prediction to verify the
correctness of the created model. Also we analyze the performance
of the proposed methodology using the area (Az) under the ROC.

5. Results

This section intends to investigate the efficiency of using Moran's
index, Geary's coefficient, and SVM for classification of breast tissues
in digital mammograms.

In order to evaluate the discrimination power of the mea-
sures extracted from spatial texture function, we plot the mea-
sures extracted from the sample breast tissues enumerated in
Fig. 6.
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Fig. 8. Geary's coefficient and Moran's index applied to abnormal tissue.

Fig. 9. Geary's coefficient and Moran's index applied to two samples of normal and abnormal tissues.

Figs. 7 and 8 exemplify, respectively, the application of Geary's
coefficient and Moran's index to a normal and an abnormal re-
gion, respectively, represented by Fig. 6(a) and (c). The curves show
the computed spatial autocorrelation for all specified directions, at
varying distances (lag). We can conclude from the results that all
functions present isotropic characteristics in the undertaken tests,
meaning that only one curve (one direction) is needed to represent
the signature of each class of tissues.

Fig. 9 shows the application of Geary's coefficient and Moran's
index to two samples of normal and abnormal tissues given in
Fig. 6(a)–(c) and (e). We verify that abnormal tissues have typically

Table 1
Analysis of accuracy in the classification of breast tissues in mammograms into
normal and abnormal.

Function Tp Tn Fp Fn Se (%) Sp (%) Ac (%) Mcc Mean accuracy
Cross-validation (%)

Geary 384 562 10 29 92.98 98.25 96.04 0.92 99
Moran 408 562 6 0 100 98.94 99.39 0.99 100

a continuous falling for Moran's measures, and continuous growth
for Geary's measures. On the other hand, for normal tissues, we
observe much more dispersion in the curves. The graphic analysis
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Fig. 10. Geary's coefficient and Moran's index applied to two samples of benign and malignant breast tissues.

Table 2
Analysis of accuracy in the classification of abnormal breast tissues in mammograms
into benign and malignant.

Function Tp Tn Fp Fn Se (%) Sp (%) Ac (%) Mcc Mean accuracy
Cross-validation (%)

Geary 39 29 2 7 84.78 93.55 88.31 0.77 77.52
Moran 34 38 4 6 85.00 90.48 87.80 0.76 75.46

shows the presence of greater dispersion between the regions in
normal rather than in abnormal cases.

Table 1 shows the results obtained for this classification step. It
is important to stress that this table presents the results of the test
of the model with 70% (975 out of 1394 breast tissues) of the whole
sample, since the remaining 30% (415 out of 1394 breast tissues)
were used for training the model. Based on the Az ROC, we have
observed that the Az for Geary's coefficient and Moran's index were
0.946 and 1, respectively.

Fig. 10 shows the application of Geary's coefficient and Moran's
index to two samples of benign and malignant breast tissues rep-
resented by Fig. 6(c)–(f). We verify that for benign tissues, Geary's
coefficient has more accentuated growth rate than in malignant tis-
sues and Moran's index has more decreasing rate for benign tissues
than for malignant ones. The graphic analysis shows the presence of
a separation between the measures extracted for benign and malig-
nant tissues using these two functions.

Table 2 shows the results obtained while classifying abnormal
tissues into benign and malignant classes. In this step, 80% of the
breast tissues classified as abnormal were used (Table 1) for both
Geary's coefficient (308 out of 384 tissues classified as abnormal) and
Moran's index (328 out of 408 tissues classified as abnormal). The
remaining 20% of the sample was used for training the model. Based
on the Az ROC, we have observed that the Az for Geary's coefficient
and Moran's index were 0.804 and 0.89, respectively (Fig. 11). Also,
Table 3 presents a more detailed statistic analysis of the 50 runs
executed for this step.

Comparing this and the various works in this area in detail is
a hard task since: (1) they use databases that are different from

the one used in this work; (2) they use the same database as this
work (DDSM), but it is impossible to know which cases are used
for training and testing; (3) they use a specific database that is not
publicly available and (4) they use different evaluation metrics (Az
ROC, sensibility, specificity, accuracy, etc.).

Despite of these considerations, we compared some works based
on accuracy or on Az ROC, which are two common metrics among
the cited works.

We also included two tables of comparisons with the works cited
in Section 2. Table 4 compares our methodology with the works
of classification of breast tissues into mass and non-mass. Table 5
compares our methodology with works of classification of breast
tissues into benign and malignant.

We may observe that the work proposed herein achieves a re-
sult comparable to the best result published in the recent literature
for normal and abnormal breast tissue classification, as depicted in
Table 4. The Az ROC is greater than the majority of the observed re-
lated works and the accuracy is in the range of the best methods,
what indicates that this is a promising methodology that must be
better investigated to obtain more conclusive works.

6. Conclusion

This paper has presented a pair of spatial texture functions with
the purpose of characterizing breast tissues using a public database
of mammograms (DDSM). The results of discriminating breast tissue
patterns obtained with the features extracted by Moran's index and
Geary's coefficient and evaluated with a support vector machine
classifier had good performance for distinguishing abnormal from
normal and benign from malignant tissues.

We verified that extracting characteristics from the sample im-
ages by applying these two functions provide accuracy to classifi-
cation of normal and abnormal breast tissues above 96% and 99%
for Geary's and Moran's measures and Az ROC reaches 0.946 and
1, respectively. The specificity found was above 98% for each func-
tion, indicating a successful discrimination power while separating
normal regions from abnormal regions. The value of sensitivity had
a rate of 92.98% using Geary's coefficient (sensitivity for Moran's
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Fig. 11. Az ROC curve for proposed methodology: (a) discriminating normal and abnormal and (b) discriminating benign and malignant.

Table 3
More statistical analysis in the classification of abnormal breast tissues in mammo-
grams into benign and malignant.

Function Se (%) Sp (%) Ac (%) Mcc Mean accuracy
Cross-validation (%)

Geary
Min 69.23 80.56 80.77 0.61 74.84
25%-quartile 75.61 85.45 82.05 0.64 79.04
Mean 78.05 89.96 83.37 0.68 80.16
Std deviation 4.68 5.69 1.96 0.04 2.09
Median 78.38 89.61 82.66 0.66 80.59
75%-quartile 80.82 93.89 85.01 0.72 81.46
Max 86.84 100.00 88.31 0.77 83.77

Moran
Min 67.44 78.38 79.27 0.58 75.46
25%-quartile 75.00 83.72 80.49 0.61 77.67
Mean 78.08 86.71 82.25 0.65 78.89
Std deviation 4.97 4.47 2.58 0.05 1.77
Median 77.57 86.48 81.71 0.63 78.68
75%-quartile 82.33 89.94 84.15 0.70 79.75
Max 87.18 94.87 87.80 0.75 83.13

Table 4
Comparison of some works regarding the classification of breast tissues into normal×
abnormal.

Works Database Accuracy (%) Az ROC

Braz et al. [7] DDSM 98.24 –
Jr et al. [8] MIAS 88 –
Verma et al. [11] DDSM 94 –
Costa et al. [10] DDSM 85 –

MIAS 88 –
Lim and Er [12] DDSM 84.4 –
Oliver et al. [13] MIAS 0.83
Oliver et al. [14] DDSM 0.83
Tourassi et al. [15] Private 0.81
Varela et al. [16] Private 0.90
Lladó et al. [17] DDSM 0.94
Our method (Geary's coefficient) DDSM 96.04 0.94
Our method (Moran's index) DDSM 99.39 1

index was 100.00%) indicating a performance that may be increased
for abnormal pattern discrimination with this function.

Classifying abnormal cases as benign and malignant, the method-
ology reaches accuracy of 88.31% and 87.80% for Geary's and Moran's
function, respectively. The Az ROC reaches 0.804 for Gearys's co-
efficient and 0.89 for Moran's index indicating a very similar

Table 5
Comparison of some works regarding the classification of abnormal breast tissues
into benign × malignant.

Works Database Accuracy (%) Az ROC

Oliveira Martins et al. [9] DDSM 94.94 –
Costa et al. [10] DDSM 99.6 –

MIAS 97 –
Gorgel et al. [34] Private 84.8 –
Jr et al. [8] MIAS 88 –
Our method (Geary's coefficient) DDSM 88.31 0.80
Our method (Moran's index) DDSM 87.80 0.89

classifier performance. The rates obtained for sensitivity were
84.78% and 85.00% for each function indicating a high precision
on correct recognition of malignant abnormal breast tissue. Also,
the rates obtained by specificity demonstrate the effectiveness of
the spatial texture measures to discriminate patterns in abnormal
breast tissues as benign and malignant cancerous cases.

Based on these results, we have observed that such measures
provide significant support to a more detailed clinical investigation
and the results were very encouraging, in special when tissues were
classified with support vector machines. Nevertheless, there is the
need to perform tests with a larger database andmore complex cases
in order to obtain a more precise behavior pattern.

Despite the good results obtained only by analyzing the texture,
further information can be obtained by analyzing the shape. Shape
is a very good characteristic extracted from mammography tissues
which is useful for discrimination in abnormal cases. As future work,
we propose a combination of texture and shape measures for a more
precise and reliable classification.
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